Equitable vertex arboricity of subcubic graphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equitable vertex arboricity of graphs

An equitable (t, k, d)-tree-coloring of a graph G is a coloring to vertices of G such that the sizes of any two color classes differ by at most one and the subgraph induced by each color class is a forest of maximum degree at most k and diameter at most d. The minimum t such that G has an equitable (t′, k, d)-tree-coloring for every t′ ≥ t is called the strong equitable (k, d)-vertex-arboricity...

متن کامل

Equitable vertex arboricity of planar graphs

Let G1 be a planar graph such that all cycles of length at most 4 are independent and let G2 be a planar graph without 3-cycles and adjacent 4-cycles. It is proved that the set of vertices of G1 and G2 can be equitably partitioned into t subsets for every t ≥ 3 so that each subset induces a forest. These results partially confirm a conjecture of Wu, Zhang

متن کامل

A conjecture on equitable vertex arboricity of graphs

Wu, Zhang and Li [4] conjectured that the set of vertices of any simple graph G can be equitably partitioned into ⌈(∆(G) + 1)/2⌉ subsets so that each of them induces a forest of G. In this note, we prove this conjecture for graphs G with ∆(G) ≥ |G|/2.

متن کامل

Equitable list point arboricity of graphs

A graph G is list point k-arborable if, whenever we are given a k-list assignment L(v) of colors for each vertex v ∈ V(G), we can choose a color c(v) ∈ L(v) for each vertex v so that each color class induces an acyclic subgraph of G, and is equitable list point k-arborable if G is list point k-arborable and each color appears on at most ⌈|V(G)|/k⌉ vertices of G. In this paper, we conjecture tha...

متن کامل

Vertex Equitable Labeling of Double Alternate Snake Graphs

Let G be a graph with p vertices and q edges and A = {0, 1, 2, . . . , [q/2]}. A vertex labeling f : V (G) → A induces an edge labeling f∗ defined by f∗(uv) = f(u) + f(v) for all edges uv. For a ∈ A, let vf (a) be the number of vertices v with f(v) = a. A graph G is said to be vertex equitable if there exists a vertex labeling f such that for all a and b in A, |vf (a) − vf (b)| ≤ 1 and the indu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2016

ISSN: 0012-365X

DOI: 10.1016/j.disc.2016.02.003